
相似三角形说课稿6篇
作为一位优秀的人民教师,常常需要准备说课稿,借助说课稿可以让教学工作更科学化。说课稿应该怎么写呢?以下是小编收集整理的相似三角形说课稿,仅供参考,希望能够帮助到大家。
相似三角形说课稿1各位老师:
大家好!下面我就我上的《相似三角形的复习》这一课说一说我的一些想法。
一、教材分析:
(一)教材的地位和作用
相似三角形是在全等三角形知识的基础上拓广和发展的,它在工农业生产、土木建筑、测量绘图和日常生活中有着广泛的应用。比如我们在测量水塔、高楼大厦的高度时,都要利用相似三角形的判定来解决有关问题。因此,相似三角形在初中数学教学中有着举足轻重的地位。
本课主要是复习相似三角形的判定和性质及其应用。通过本节课的学习,培养学生猜想、实验、证明、探索等能力,对掌握观察、比较、类比、转化等思想有重要作用。
(二)教学目标:
根据《新课程标准纲要》对这部分内容的要求结合学生的实情,我将本节课的教学目标确定为:
知识目标:
①掌握三角形相似的判定方法。
②会用相似三角形的判定方法和性质来判断及计算。
能力目标:
①通过相似三角形的判定方法培养学生的动手操作能力。
②利用相似三角形的判定及其性质进行有关判断及计算,培养学生探究新知识,提高分析问题和解决问题的能力,
情感目标:加强对学生探究知识的兴趣和情感培养,引导学生勇于探索,大胆推想,感受数学的魅力,激发其学习的欲望与创造力
(三)教学重点与难点
这节课的重点是三角形相似的判定性质及其应用。
难点是三角形相似的判定和性质的灵活运用。
突破重难点的方法是充分运用多媒体教学手段,设置问题、探究讨论、例题讲解、小组讨论,逐一突破重难点。
二.教学方法的选择与应用
本节课采用了多媒体辅助教学,一方面能够直观、生动地反映图形,增加课堂的容量,同时有利于突出重点、分散难点,增强教学条理性,形象性,更好地提高课堂效率。教学中启发学生发现问题、思考问题,培养学生逻辑思维能力,逐步设疑,引导学生积极参与讨论,提高学生学习的兴趣和学习积极性。
三.学法
《数学新课程标准纲要》指出:有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学习数学的重要方式。为了充分体现《数学新课程标准纲要》的要求,培养学生的动手实践能力,逻辑推理能力,积累丰富的数学活动经验,本节课主要采用自主探索与合作交流的学习方法,使学生积极参与教学过程,在教学过程培养学生提出问题、分析问题、解决问题的能力,进一步理解观察、类比、分析等数学思想方法。
四.教学设计:
根据《数学课程标准》中“要引导学生投入到探索与交流的学习活动中”的教学要求,本节课教学过程我是这样设计的。
(一)、温故知新
1、选一选下列各对三角形不能判定为相似的是( )
A.一腰和底边成比例的两个等腰三角形
B.有一个角对应相等的两个等腰三角形
C.△ABC的三边为1,2,△DEF的三边为2,3
D.有一个锐角对应相等的两个直角三角形
(设计意图:使学生加深对相似三角形判定方法的理解。)
2补一补如图点P是△ABC的AB边上的一点,要使△APC∽△ACB,则需补上哪个条件?
(设计意图:通过让学生自己补条件得到到两个相似三角形,进一步让学生理解判定方法,同时激发学生自主学习,学会自己编题目,做学习的主人)
(二)、寻找相似三角形,相似三角形的证明,和图形变换
3.数一数:
已知△ABC中, BD,CE分别是高线,BD,CE交于点O
求证:△ABD∽△ACE
思考
(1)图中与△ABD相似的三角形有几个?数一数图中相似三角形有几对?
(2)如果连接ED,看看图中相似三角形还有吗?
△AED=1,S△ABC=4,求∠A的度数
(设计意图:在数相似三角形时既要不漏数也要不少数是一个重点,也是一个难点。所以一开始我先让学生数图中与△ABD相似的三角形有哪几个?再让学生数一数图中相似三角形有几对?学生就不会漏数,因为学生特别在数两两相似的三角形时学生往往漏数。另外出示的问题分三步走,由易到难,各种知识相结合,使题目进一步得到延伸与拓展,培养学生的.综合运用知识的能力。)
4.证一证:
已知:△ABC内接于⊙O,AB=AC,D为BC上一点,延长AD交⊙O于E,求证:AB2=AD.AE
思考:如改为D为BC延长线上的一点,其它条件都不变,结论是否成立?
(设计意图:教师在多媒体几何画板上直观地演示从两个图形的探索,引导学生发现:尽管有时尽管图形变了,但证明的思路和方法也不变。也就是“形变实不变”。另由于采用多媒体数学,不仅增加了课堂教学的容量,而且能让学生在图形的运动中直观地获取知识,享受到几何的动感美。
(三)画图题
通过画图构造两个或三个相似三角形和在4x4的正方形网格中构造相似三角形是近年来中考中的一个亮点,本环节通过一系列画图问题的设置和解决,旨在使学生在获得新知的情况下,体验成功,从而增加对数学的兴趣。
5(1)已知:△ABC中,∠C=90,∠A=60,∠B=30;△DEF中,∠D=90,∠E=50,∠F=40,将这两个三角形各分成两个三角形,使△ABC所分成的每一个三角形与△DEF所分成的每个三角形分别对应相似。
(2)在方格纸中,每个小格的顶点叫做格点,以格点为顶点的三角形叫做格点三角形.在如图4x4的方格纸中,△ABC是一个格点三角形,请你画一个格点三角形,使它与△ABC相似(相似比不为1)
课外探究题
(3)点F是△ ABC中AB边上的一点,过点F作直线(不与直线AB重合)截△ ABC,使截得的三角形与原三角形相似,满足这样条件的直线最多有几条,最少有几条?(设计意图课堂教学中,应尽量创造愉悦的求知氛围,培养他们勇于探索、勇于发现问题的能力,形成良好的思维习惯
以上是我的本堂课的一些粗浅的想法,不足之处谨各位老师批评指正,谢谢大家。
相似三角形说课稿2一、教材分析
1、教材的地位和作用
本课位于苏科版义务教育课程标准实验教科书八年级下册第十章第四节第一课时。主要内容是探索三角形相似的条件,并利用两个角对应相等来判断两个三角形相似,它是三角形的重要基础知识,学习本节内容,既巩固了前 ……此处隐藏10140个字……对应相等,那么这两个三角形相似.
可简单说成:两角对应相等,两三角形相似.
组织学生进行讨论,在此基础上教师引导学生从对应边和对应角入手进行观察。教师在多媒体几何画板上直观地演示。在教学中,通过以趣味性题目引入,从而引起悬念,引起学生的注意,激发他们的求知欲,让每个学生都积极参与。
通过学生自己探索、讨论,由学生自己得出结论:如果两个三角形中有两对角对应相等,那么这两个三角形相似。即两角对应相等的两个三角形相似。这样,从学生自己动力手操作、实验所得出的判定条件,让学生产生自豪感及满足感,培养学生的自信心及逻辑推理能力。
(三)、例题讲解:
例:如图,D、E分别是△ABC这AB、BC上的点,DE∥BC,
(1)图中有哪些相等的角?
(2)找出图中的相似三角形,并说明理由。
(3)写出三组成比例的线段。
分析:本例意在渗透平行与相似的内在联系,同时,本例有意识地渗透了简单逻辑推理的思想,承前启后。
解:(1)DE//BC
∠ADE与∠ABC是同位角∠ADE=∠ABC,∠AED=∠ACB
∠AED与∠ACB是同位角
(2)△ADE∽△ABC理由是:
∠ADE=∠ABC
∠AED=∠ACB△ADE∽△ABC
(3)△ADE∽△ABC==
想一想:在上面的例题的条件下,=吗?=吗?(学生画图,交流,老师用多媒体演示出来。)
解:由DE//BC得,=
根据比例基本性质得:
=
即=
两边同时减去1,得
1=1
即=
课后思考:若DE与BC不平行,它们还可能相似吗?说明理由。
(设计意图:分三个问题显示,由易到难,新旧知识相结合,分散难点,让学生明白判定方法(一)在实际问题中的应用,最后设置一道课后思考与讨论,使题目进一步延伸与拓展,培养学生的发散思维。)
(三)随堂练习:
判断题:(让学生判断,老师用几何画板演示)
(1)有一个锐角对应相等的两个直角三角形相似。()
(2)所有的直角三角形都相似。()
(3)有一个角相等的两个等腰三角形相似。()
(4)顶角相等的两个等腰三角形相似。()
(5)所有的等边三角形都相似。()
解:(1)对。有一个锐角对应相等的两个直角三角形相似。
因为是两个直角三角形,所以有一对直角相等,再加上一对锐角相等,根据判定方法1,得,这两个三角形相似。
(2)错。
(3)错。有一个角相等的两个等腰三角形不相似。
例:一个顶角为30°的等腰三角形与一个底角等于30°的等腰三角形就不相似.
(4)对。顶角相等的两个等腰三角形相似。
因为两个等腰三角形的顶角相等,所以它们的四个底角都相等,因此有三对角对应相等,所以这两个三角形相似。
(5)对。因为等边三角形的三个角都是60°。
(设计意图:使学生加深对判定方法(一)的理解。)
(四)补充练习:
(1)已知:△ABC和△A′B′C′中,∠B=∠B′=75°,∠C=50°,∠A′=55°,问:这两个三角形相似吗?为什么?
解:(1)在△ABC中,
∵∠B=75°,∠C=50°
∴∠A=55°
∴∠B=∠B′,∠A=∠A′
∴△ABC∽△A′B′C′
(2)已知△ABC和△A′B′C′中,∠B=∠B′=75°,∠A=50°,∠A′=55°,问:这两个三角形相似吗?为什么?
解:(1)在△ABC中,
∵∠B=75°,∠A=50°
∴∠C=55°
而在△A′B′C′中,
∵∠B′=75°,∠A′=55°
∴∠C′=50°
∴根据判定方法(一),△ABC和△A′B′C′不相似。
(设计意图:通过让学生比较这两道题中条件的异同,进一步让学生理解判定方法(一)的运用)
现再请学生回头看看引入那道题,利用判定方法(一)让学生自己去发现两个三角形相似,然后再运用相似三角形的对应边成比例来解这道题,这样一来可以加深对判定方法(一)的理解,二来可以增强学生的自信心,培养学生分析问题、解决问题的能力。
通过系列问题的设置和解决,旨在降低难度,使难度点予以突破,同时使学生在获得新知的情况下,体验成功,从而增加对数学的兴趣。
(五)、总结提高:
提问:“通过这节课的学习有什么收获?”
(同桌对讲,畅谈自己的感受和体会,学生发言,老师总结与归纳)
(设计意图:让学生自己小结,活跃了课堂气氛,做到全员参与,理清了知识脉络,强化了重点,培养了学生口头表达能力。)
(六)、分层作业:
(必做题):P119的习题4.7的1、2
(选做题):
如图,已知D是△ABC的边AB上任一点,DF∥AC交BC于E.AF交BC于M,且∠B=∠F,△AMC∽△BDE吗?请说明理由。
(设计意图:让学生巩固所学内容并进行自我检验与评价,既面向全体学生,又因材施教,照顾到学有余力的学生。)
l新的探索:(提高题)
(4)如图梯形ABCD中,AD∥BC,∠ABC=90°,对角线BD⊥DC,求证:△ABD∽△DCB.
分析:由已知条件不可能推出有关比例式时,只能找相等的角.用定理“两角对应相等,两三角形相似”时,要注意图形中的公共角、对顶角、直角、两直线平行时的同位角、内错角或等角的余角、补角等等.
(设计意图:旨在体现因材施教、分层教学的原则。同时上述问题的进一步伸展,给学生展示了一个思维发散的平台。而且这也为下节课学习证明作了必要的铺垫。)
四、教学评价:
为了实现教学目标,优化教学过程,提高课堂效率,在教学上组织学生参与“创设问题、实验、观察、讨论、总结”这符合现代教学理论的观点,把素质教育落到实处。另一方面对学生暴露思维过程,拓展性和开放性题目的设计编排,培养了学生的直觉思维能力和发散思维能力。
五分钟小测:
1、
C
如图,AB,CD相交于E,ΔAEC∽ΔDEB,∠A与∠D是对应角,则其余的对应角为xx,对应边的比例式为xx
A
E
B
D
2、
A
如图:∠BAC=∠ADB,图中有相似三角形吗?
为什么?
D
C
B
3、已知ΔABC,P是AB上一点,连接CP,满足什么条件时,ΔACP与ΔABC相似.



