《加法交换律和结合律》教学设计优选

时间:2025-08-08 20:23:02
《加法交换律和结合律》教学设计优选

《加法交换律和结合律》教学设计优选

作为一名人民教师,有必要进行细致的教学设计准备工作,教学设计是一个系统化规划教学系统的过程。写教学设计需要注意哪些格式呢?下面是小编整理的《加法交换律和结合律》教学设计优选,欢迎大家分享。

《加法交换律和结合律》教学设计优选1

一、教学内容:

苏教版小学数学四年级下册第56—57页例2,及“试一试”、“练一练”。

二、教学目标:

1、让学生经历运用加法运算律进行简便计算的探索过程,掌握其计算方法,会正确地进行简便计算。

2、在教学过程中,培养学生思维的灵活性,培养学生初步的逻辑思维能力。

3、让学生在学习过程中进一步体验数学与生活的联系,感受简便计算的乐趣,培养学习数学的积极情感。

三、教学重点:

理解并掌握如何运用加法运算律进行简便计算。教学难点:能灵活运用加法运算律进行简便计算和解决问题。教学准备:电子白板

四、教学过程

1、师:上节课我们学习了加法的两个运算律,谁能告诉大家用字母怎样来表示?各是什么意思?

生1:a+b=b+a(两个数相加,交换加数的位置,和不变,这是加法交换律。)

生2:(a+b)+c=a+(b+c)(三个数相加,可以先把前面两个数相加,;也可以先把后面两个数相加,它们的和不变。)

2、进行一个抢答小比赛:

师:看得出大家对这两个运算律已经掌握的不错了。接下来咱们来一个抢答比赛。比比谁最快说出气球上三个数的和。算好了直接站起来报得数。

(64、19、36)

(38、18、32)

(75、27、63)

出示第一组气球:64、19、36

学生口答后提问:你怎么算的这么快的?你怎么想到先将64和

36相加呢?

明确:把能凑成整百的数先加起来,再与另一个数相加,这样比较简便(板书“简便”)。

出示第二组气球:75、27、73

师:怎么算的?这样算真简便。下一组。

出示第三组气球:38、18、32

师:这题没有两个数相加得100的,咱们怎么办的?

3、小结

谈话:看来,要想算的快,是有窍门的。只要找到了方法,把能凑成整十或整百的数先加起来,再与另一个数相加,这样计算就更简便。我们今天就要一起研究,如何简便计算。(补全课题:简便计算)

五、用加法运算律进行简便计算

1、教学例题。

出示书P57的例题图。

师:会跳绳吗?从图中你了解到哪些数学信息?

能提出用加法计算的问题吗?会列式计算吗?

先让学生独立列式计算。教师巡视,指名板演。

交流反馈:这两位同学的答案对吗?他们分别是怎么算的

框出29+46+54=29+(46+54)

提问:这两个式子为什么相等?这两种方法,哪种方法更简便?他是怎样让计算变得简便的`?

谈话:运用加法结合律,将相加能凑成整百的数先加起来,再与另一个数相加,计算更简便。

2、教学“试一试”

谈话:下面两题,你能试着用简便方法计算吗?

出示“试一试”两题:56+69+2178+(47+22),学生独立完成。同桌之间说一说,你是怎么算的,依据是什么?

班级交流:选取一组同桌上台展示计算过程,并讲解算法及依据,其他同学补充。

3、小结:观察黑板上的这3题,我们是如何进行简便计算的?明确:运用加法交换律和加法结合律,我们可以把能凑成整十、整百的数先加起来,再与另一个数相加,让计算变得简便。这就是我们今天学习的,应用加法运算律进行简便计算。(补全课题)

六、及时训练,巩固提高

1、解决实际问题(练习九第7题)

谈话:掌握了简便计算的方法,我们还要用它们来解决实际问题。(课件出示)学生独立完成练习九第7题。

校对答案。

提问:怎样算比较快?

谈话:简便计算可以帮助我们更快地解决问题。因此,解决问题时,如果能简便,尽量简便。

2、两个数相加

谈话:刚才我们做的都是三个数相加的算式,同学们做得不错。接下来还有一些挑战题敢不敢试试?

出示:175+201

师:这一题你能简便运算吗?两个数,如何凑呢?

换个思路,可不可以先“拆”?

师:拆哪个数?(生:拆那个最接近整百的数。)

师根据学生回答板书。

师:先拆再凑的办法真好,谁想出来的,“小数学家”。这两题能用先拆再凑的方法做吗?

出示:354+102205+417

师:同桌先互相说一说,你打算拆哪个数。

学生完成在练习本上。指名板演。交流反馈。

出示246+198。

提问:这道题目,你能想办法简便计算吗?小组之中说一说,再独立计算。

指名板演,共同订正。

明确:198很接近200,我们可以将它先看成200去计算。但是这样多加了2,因此还要减去2。

出示刚才做的几道题目

提问:刚才我们算的这几题,都是怎样让计算变得简便的?分别

改变了哪个数?(学生口答,教师课件将改变的数圈出)

提问:改变的都是什么样的数?

明确:都将一个加数看成和它接近的整百数,然后多加了就减去,少加了就补上。

师:这几道算式,分别应该改变哪个数?

口答:204+328436+97299+153

3、拓展题

提问:现在,你会简便计算了吗?要想运算更简便,关键是什么?那么,我们来几个难点的挑战,不要被打倒哦!

①99+199+2,小组中说一说,再在班级交流。

②36+28+44+72,怎么算更简便?同桌之间说一说,再列式计算。③1+2+3+4+……+98+99+100

好样的,还想继续挑战吗?一百个数呢?(同学们自己独立完成)交流:指名说方法。

师:当之无愧的小数学家呀,想知道世界上最早用运用简便方法计算这题的人吗?

播放视频:数学王子高斯的故事。

师:看了高斯的故事,有什么想说的吗?

师:是的,只要是深刻而持久的思考就会有发现。

七、总结

师:最后回想一下,这节课你有哪些收获?

《加法交换律和结合律》教学设计优选2

一、教学目标:

1、让学生经历探索加法运算律的过程,理解并掌握加法交换律和结合律,会用字母来表示。

2、在探索运算律的过程中,发展学生的观察、比较、抽象、概括能力,培养学生的符号感。

3、让学生在数学学习过程中获得探究的乐趣、成功的喜悦,进一步增强对数学学习的兴趣和信心。

4、初步形成独立思考、合作交流的意识和习惯。

二、教学重点:

理解掌握加法的交换律和结合律,并会用字母表示他们。

三、教学难点:

引导学生通过讨论,计算从而自己发现并总结出加法交换律、加法结合律的过程。

四、教学准备:

课件、投影仪、卡片

五、教学过程:

(一)创设情境

1、谈话:同学们,长江,黄河就像两条长龙盘卧在中国大地,特别是黄河被称为我们的“母亲河”。这几天我们一直在学习有关黄河的知识,了解到了许多有关黄河的信息,除了我们学过的,你还了解到那些有关黄河的知识?(学生根据课前调查回答)想不想再多了解一些?

课件展示情境录像:(课件展示的关键是让学生从中知道黄河流域的小知识,例如上游:青藏高原黄土高原内蒙古高原中游:黄土高原下游:华北平原等小知识)最后大屏幕定格在信息窗三的情境图。

以上展示在大家面前的'就是黄河流域图。教师板书:黄河流域

请同学们仔细观察,你能获得了哪些数学信息?

学生观察汇报,生汇报:根据黄河流域图我了解到黄河分为上游、中游和下游(1、黄河上游长3472千米,中游长1206千米,下游长786千米;2、黄河上游流域面积是39万平方千米,中游是34万平方千米,下游是2万平方千米;)

教师适时板书相应的信息条件。

2、你能根据这些信息提出哪些数学问题呢?学生口答。教师板书出问题。

问题(1)黄河流域的面积是多少万平方千米?

问题(2)黄河全长多少千米?

(二)出示学习目标

同学们提出了这么多有价值的问题,那么今天我们将解决那些问题呢?请看本节课的学习目标:

1、让学生经历探索加法运算律的过程,理解并掌握加法交换律和结合律,会用字母来表示,能够运用所学的运算定律进行简算。

2、在探索运算律的过程中,发展学生的观察、比较、抽象、概括能力,培养学生的符号感。

(三)出示自学指导

为了能够更好地解决今天的学习目标,老师给大家提供了一些指导意见,请看自学指导。

(自学指导:请同学们认真看教科书第13—14页的信息窗3的第一个红点和小电脑的内容,重点看解决问题的过程,思考:(1)怎样解答同学们提出的问题?哪种方法简单?(2)什么是加法的结合律?怎样用字母式表示?(3)什么是加法交换律?怎样用字母式表示?

(5分钟后,比一比谁汇报得最清楚。)

(四)学生自学

师:下面请同学们根据“自学指导”开始自学,比一比谁看书最认真,谁自学效果最好!(师目光巡视每一个学生,特别要关注特困生。)

六、汇报交流,评价质疑

(一)调查

师:看完的同学请举手?

(二)全班汇报

1、问题一:黄河流域的面积是多少万平方千米?

学生在列式解答时,可能会出现两种情况:

(1)39+34+2和34+2+39

(2)(39+34)+2和39+(34+2)。

2、问题二:黄河全长多少千米?

学生可能出的情况:

(1)、3470+1210+790和1210+790+3470

(2)(3470+1210)+790和3470+(1210+790)。

今天我们要学的知识就在这两组算式中。

(设计意图:充分运用教材情境图,引导学生获取信息,提出加法问题。在此基础上让学生列出算式。通过这两组算式学习今天的新知识,为下面学习埋下了伏笔。学生会马上把精力投入到这两个算式的研究中,激发了学生探究的兴趣。)

3、观察、比较、发现规律

(1)观察这些算式,你们发现了什么?

生汇报:每组算式运算的数相同,运算的结果相同,运算的顺序不同。

例如:

(39+34)+2=39+(34+2)

(3470+1210)+790=3470+(1210+790)。

(2)是不是所有的三个数相加都符合这些规律呢?举例验证一下吧:(每个学生在练习本上写出几组这样的算式,看结果怎样)

生汇报:

(35+63)+15=35+(63+15)

(325+82)+18=325+(82+18)…

(3)把你的发现告诉大家?(将学生的举例用实物投影展示)

(三个数相加时,先把前两个数相加,或先把后两个数相加,和不变。)

师指出这条规律叫做加法结合律。

(4)你能用你喜欢的方法表示这加法结合律吗?

学生用各种符号、字母表示这个运算定律。最终教师指出,在数学上,我们统一用a、b、c来表示三个加数,因此加法结合律可以写作(a+b)+c=a+(b+c)。学生齐读,教师板书在黑板上

小结:刚才我们通过解决两个问题发现并归纳出了加法结和律。

(设计意图:本环节经历了猜测—举例—验证—得出结论的过程,无形之中培养了学生一种数学思想。)

4、学法迁移,探索加法交换律。

那么,加法运算中还有其他的规律吗?想不想知道?我们先来做个游戏吧。

(1)游戏:找朋友。

在每个小组中都有一个算式卡片,请同学们小组合作,仔细想一想,算一算,它应该是屏幕上哪个算式的好朋友?为什么?

(2)同学们真棒,很快就为自己的算式找到了合适的朋友,还有谁的算式没有找到朋友?你能根据刚才同学们的方法给他介绍一个合适的好朋友吗?

《《加法交换律和结合律》教学设计优选.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式